Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 80(5): 697-707, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15765547

RESUMO

Disulfide bonds play a crucial role in the stabilization of the amphipathic folding of the diverse families of cysteine-rich antimicrobial peptides. The determination of cysteine pairings in these peptides has largely depended on sequence homology criteria, since the classical methods of disulfide bond characterization, which usually require proteolysis as a first step, encounter serious drawbacks derived from the tight folding and the presence of vicinal cysteines. We have chosen the Pyrularia pubera thionin, a 47-residue peptide with four internal disulfides and a remarkable resistance to most proteases, as a representative member of this type of cysteine-rich peptides and have shown that a combination of partial reduction and cyanylation readily allows the determination of its disulfide bonds. We have also studied by molecular dynamics and a combination of partial reduction and proteolysis the role of disulfide bonds in the stabilization of the tridimensional structure of this thionin and found a good agreement with our partial reduction data, suggesting that removal of only one disulfide bond is enough to significantly alter the folding of the peptide.


Assuntos
Dissulfetos/química , Proteínas de Plantas/química , Pyrularia/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Pept Res ; 64(6): 210-24, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15613085

RESUMO

We propose a molecular model for phospholipid membrane lysis by the ubiquitous plant toxins called thionins. Membrane lysis constitutes the first major effect exerted by these toxins that initiates a cascade of cytoplasmic events leading to cell death. X-ray crystallography, solution nuclear magnetic resonance (NMR) studies, small angle X-ray scattering and fluorescence spectroscopy provide evidence for the mechanism of membrane lysis. In the crystal structures of two thionins in the family, alpha(1)- and beta-purothionins (MW: approximately 4.8 kDa), a phosphate ion and a glycerol molecule are modeled bound to the protein. (31)P NMR experiments on the desalted toxins confirm phosphate-ion binding in solution. Evidence also comes from phospholipid partition experiments with radiolabeled toxins and with fluorescent phospholipids. This data permit a model of the phospholipid-protein complex to be built. Further, NMR experiments, one-dimensional (1D)- and two-dimensional (2D)-total correlation spectroscopy (TOCSY), carried out on the model compounds glycerol-3-phosphate (G3P) and short chain phospholipids, supported the predicted mode of phospholipid binding. The toxins' high positive charge, which renders them extremely soluble (>300 mg/mL), and the phospholipid-binding specificity suggest the toxin-membrane interaction is mediated by binding to patches of negatively charged phospholipids [phosphatidic acid (PA) or phosphatidyl serine (PS)] and their subsequent withdrawal. The formation of proteolipid complexes causes solubilization of the membrane and its lysis. The model suggests that the oligomerization may play a role in toxin's activation process and provides insight into the structural principles of protein-membrane interactions.


Assuntos
Membrana Celular/química , Fosfolipídeos/química , Proteínas de Plantas/química , Toxinas Biológicas/química , Peptídeos Catiônicos Antimicrobianos , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Polarização de Fluorescência , Glicerofosfatos/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Fosfolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Pyrularia/química , Alinhamento de Sequência , Solubilidade , Toxinas Biológicas/metabolismo
3.
Peptides ; 24(4): 515-21, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12860194

RESUMO

Pyrularia thionin (PT) is a basic 47 amino acid peptide isolated from the nuts of Pyrularia pubera. Its structure and properties have been studied in some detail. Its receptor site is a domain of membrane phosphatidyl serine (PS), where it binds with a relatively high specificity. A segment of its covalent structure, the nonapeptide Thr-Trp-Ala-Arg-Asn-Ser-Tyr-Asn-Val, designated serine nonapeptide (SNP), corresponds to amino acids 7-15 of the thionin, except for the position 12 (Ser), which substitutes for Cys, to give stability. This peptide represents what we consider to be the active site of the thionin, and it also binds to PS domains, but less tightly than thionin does. The peptide has an effect on the prothrombinase assay using the chromophore S2238 to measure the thrombin produced by the prothrombinase complex. It is shown that SNP stimulates the prothrombinase complex activity, instead of inhibiting it, as would be expected if it simply covered the PS sites on the membrane of erythrocyte ghosts, used in the prothrombinase assay. SNP appears to substitute for Va in the prothrombinase complex reaction, in a Ca(2+) independent manner, being even more effective in the absence than in the presence of ghosts. In the clotting system, SNP can also substitute for Factor Va.


Assuntos
Peptídeos/química , Tromboplastina/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Cistina/química , Relação Dose-Resposta a Droga , Membrana Eritrocítica/metabolismo , Fator Va/química , Fator Xa/química , Humanos , Nozes/metabolismo , Proteínas de Plantas/química , Pyrularia/metabolismo , Espectrofotometria , Temperatura , Trombina/química , Tromboplastina/química , Fatores de Tempo , Valina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...